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CS 267 Applications of Parallel Computers

Lecture 21: 

 Load Balancing and Scheduling

Robert Lucas

Based on previous notes by James
Demmel and David Culler
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Outline

° Recall graph partitioning as load balancing technique

° Overview of load balancing problems, as determined by
• Task costs

• Task dependencies

• Locality needs

° Spectrum of solutions
• Static - all information available before starting

• Semi-Static - some info before starting

• Dynamic - little or no info before starting

° Survey of solutions
• How each one works

• Theoretical bounds, if any

• When to use it



CS267  L23 Load Balancing and Scheduling.3 Demmel Sp 1999

Review of Graph Partitioning

° Partition G(N,E) so that
• N = N1 U … U Np, with each |Ni| ~ |N|/p

• As few edges connecting different Ni and Nk as possible

° If N = {tasks}, each unit cost, edge e=(i,j) means task i has to
communicate with task j, then partitioning means
• balancing the load, i.e. each |Ni| ~ |N|/p

• minimizing communication

° Optimal graph partitioning is NP complete, so we use
heuristics (see Lectures 14 and 15)
• Spectral

• Kernighan-Lin

• Multilevel

° Speed of partitioner trades off with quality of partition
• Better load balance costs more; may or may not be worth it
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Load Balancing in General

Enormous and diverse literature on load balancing

° Computer Science systems
• operating systems

• parallel computing

• distributed computing

° Computer Science theory

° Operations research (IEOR)

° Application domains

A closely related problem is scheduling, which is to
determine the order in which tasks run
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Understanding Different Load Balancing Problems

Load balancing problems differ in:

° Tasks costs
• Do all tasks have equal costs?

• If not, when are the costs known?
- Before starting, when task created, or only when task ends

° Task dependencies
• Can all tasks be run in any order (including parallel)?

• If not, when are the dependencies known?
- Before starting, when task created, or only when task ends

° Locality
• Is it important for some tasks to be scheduled on the same

processor (or nearby) to reduce communication cost?

• When is the information about communication between tasks
known?
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Task cost spectrum
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Task Dependency Spectrum
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Task Locality Spectrum (Data Dependencies)
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Spectrum of Solutions

One of the key questions is when certain information
about the load balancing problem is known

Leads to a spectrum of solutions:

° Static scheduling.  All information is available to
scheduling algorithm, which runs before any real
computation starts.  (offline algorithms)

° Semi-static scheduling.  Information may be known
at program startup, or the beginning of each
timestep, or at other well-defined points.  Offline
algorithms may be used even though the problem is
dynamic.

° Dynamic scheduling.  Information is not known until
mid-execution.  (online algorithms)
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Approaches

° Static load balancing

° Semi-static load balancing

° Self-scheduling

° Distributed task queues

° Diffusion-based load balancing

° DAG scheduling

° Mixed Parallelism

Note: these are not all-inclusive, but represent some
of the problems for which good solutions exist.
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Static Load Balancing

° Static load balancing is use when all information is
available in advance

° Common cases:
• dense matrix algorithms, such as LU factorization

- done using blocked/cyclic layout

- blocked for locality, cyclic for load balance

• most computations on a regular mesh, e.g., FFT

- done using cyclic+transpose+blocked layout for 1D

- similar for higher dimensions, i.e., with transpose

• sparse-matrix-vector multiplication

- use graph partitioning

- assumes graph does not change over time (or at least within
a timestep during iterative solve)
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Semi-Static Load Balance

° If domain changes slowly over time and locality is
important
• use static algorithm

• do some computation (usually one or more timesteps) allowing
some load imbalance on later steps

• recompute a new load balance using static algorithm

° Often used in:
• particle simulations, particle-in-cell (PIC) methods

- poor locality may be more of a problem than load imbalance
as particles move from one grid partition to another

• tree-structured computations (Barnes Hut, etc.)

• grid computations with dynamically changing grid, which
changes slowly
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Self-Scheduling

° Self scheduling:
• Keep a centralized pool of tasks that are available to run

• When a processor completes its current task, look at the pool

• If the computation of one task generates more, add them to the
pool

° Originally used for:
• Scheduling loops by compiler (really the runtime-system)

• Original paper by Tang and Yew, ICPP 1986
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When is Self-Scheduling a Good Idea?

Useful when:

° A batch (or set) of tasks without dependencies
• can also be used with dependencies, but most analysis has only

been done for task sets without dependencies

° The cost of each task is unknown

° Locality is not important

° Using a shared memory multiprocessor, so a
centralized pool of tasks is fine
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Variations on Self-Scheduling

° Typically, don’t want to grab smallest unit of parallel
work.

° Instead, choose a chunk of tasks of size K.
• If K is large, access overhead for task queue is small

• If K is small, we are likely to have even finish times (load balance)

° Four variations:
• Use a fixed chunk size

• Guided self-scheduling

• Tapering

• Weighted Factoring

• Note: there are more
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Variation 1: Fixed Chunk Size

° Kruskal and Weiss give a technique for computing
the optimal chunk size

° Requires a lot of information about the problem
characteristics
• e.g., task costs, number

° Results in an off-line algorithm.  Not very useful in
practice.
• For use in a compiler, for example, the compiler would have to

estimate the cost of each task

• All tasks must be known in advance
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Variation 2: Guided Self-Scheduling

° Idea: use larger chunks at the beginning to avoid
excessive overhead and smaller chunks near the
end to even out the finish times.

° The chunk size Ki at the ith access to the task pool
is given by

                        ceiling(Ri/p)

° where Ri is the total number of tasks remaining and

° p is the number of processors

° See Polychronopolous, “Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel
Supercomputers,” IEEE Transactions on Computers,
Dec. 1987.
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Variation 3: Tapering

° Idea: the chunk size, Ki is a function of not only
the remaining work, but also the task cost
variance
• variance is estimated using history information

• high variance => small chunk size should be used

• low variant => larger chunks OK

° See S. Lucco, “Adaptive Parallel Programs,” PhD
Thesis, UCB, CSD-95-864, 1994.
• Gives analysis (based on workload distribution)

• Also gives experimental results -- tapering always works at least
as well as GSS, although difference is often small
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Variation 4: Weighted Factoring

° Idea: similar to self-scheduling, but divide task cost
by computational power of requesting node

° Useful for heterogeneous systems

° Also useful for shared resource NOWs, e.g., built
using all the machines in a building
• as with Tapering, historical information is used to predict future

speed

• “speed” may depend on the other loads currently on a given
processor

° See Hummel, Schmit, Uma, and Wein, SPAA ‘96
• includes experimental data and analysis
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Distributed Task Queues

° The obvious extension of self-scheduling to
distributed memory is:
• a distributed task queue (or bag)

° When are these a good idea?
• Distributed memory multiprocessors

• Or, shared memory with significant synchronization overhead

• Locality is not (very) important

• Tasks that are:

- known in advance, e.g., a bag of independent ones

- dependencies exist, i.e., being computed on the fly

• The costs of tasks is not known in advance
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Theoretical Results

Main result:  A simple randomized algorithm is optimal with high
probability

° Adler et al [95] show this for independent, equal sized tasks
• “throw balls into random bins”

• tight bounds on load imbalance; show p log p tasks leads to “good” balance

° Karp and Zhang [88] show this for a tree of unit cost (equal size) tasks
• parent must be done before children, tree unfolds at runtime

• children “pushed” to random processors

° Blumofe and Leiserson [94] show this for a fixed task tree of variable
cost tasks

• their algorithm uses task pulling (stealing) instead of pushing, which is good for locality

• I.e., when a processor becomes idle, it steals from a random processor

• also have (loose) bounds on the total memory required

° Chakrabarti et al [94] show this for a dynamic tree of variable cost tasks
• works for branch and bound, I.e. tree structure can depend on execution order

• uses randomized pushing of tasks instead of pulling, so worse locality

° Open problem: does task pulling provably work well for dynamic trees?
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Engineering Distributed Task Queues

A lot of papers on engineering these systems on various
machines, and their applications

° If nothing is known about task costs when created
• organize local tasks as a stack (push/pop from top)

• steal from the stack bottom (as if it were a queue), because old tasks
likely to cost more

° If something is known about tasks costs and communication
costs, can be used as hints.  (See Wen, UCB PhD, 1996.)
• Part of Multipol (www.cs.berkeley.edu/projects/multipol)

• Try to push tasks with high ratio of cost to compute/cost to push

- Ex: for matmul, ratio = 2n3 cost(flop) / 2n2 cost(send a word)

° Goldstein, Rogers, Grunwald, and others (independent work)
have all shown
• advantages of integrating into the language framework

• very lightweight thread creation

° CILK (Leicerson et al)  (supertech.lcs.mit.edu/cilk)
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Diffusion-Based Load Balancing

° In the randomized schemes, the machine is treated
as fully-connected.

° Diffusion-based load balancing takes topology into
account
• Locality properties better than prior work

• Load balancing somewhat slower than randomized

• Cost of tasks must be known at creation time

• No dependencies between tasks
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Diffusion-based load balancing

° The machine is modeled as a graph

° At each step, we compute the weight of task
remaining on each processor
• This is simply the number if they are unit cost tasks

° Each processor compares its weight with its
neighbors and performs some averaging
• Markov chain analysis

° See Ghosh et al, SPAA96 for a second order
diffusive load balancing algorithm
• takes into account amount of work sent last time

• avoids some oscillation of first order schemes

° Note: locality is still not a major concern, although
balancing with neighbors may be better than random
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DAG Scheduling

° For some problems, you have a directed acyclic
graph (DAG) of tasks
• nodes represent computation (may be weighted)

• edges represent orderings and usually communication (may also
be weighted)

• not that common to have the DAG in advance

° Two application domains where DAGs are known
• Digital Signal Processing computations

• Sparse direct solvers (mainly Cholesky, since it doesn’t require
pivoting).  More on this in another lecture.

° The basic offline strategy: partition DAG to minimize
communication and keep all processors busy
• NP complete, so need approximations

• Different than graph partitioning, which was for tasks with
communication but no dependencies

• See Gerasoulis and Yang, IEEE Transaction on P&DS, Jun ‘93.
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Mixed Parallelism

As another variation, consider a problem with 2 levels
of parallelism

° course-grained task parallelism
• good when many tasks, bad if few

° fine-grained data parallelism
• good when much parallelism within a task, bad if little

Appears in:

° Adaptive mesh refinement

° Discrete event simulation, e.g., circuit simulation

° Database query processing

° Sparse matrix direct solvers



CS267  L23 Load Balancing and Scheduling.27 Demmel Sp 1999

Mixed Parallelism Strategies
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Which Strategy to Use
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Switch Parallelism: A Special Case
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A Simple Performance Model for Data Parallelism
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Values of Sigma (Problem Size for Half Peak)
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Modeling performance

° To predict performance, make assumptions about
task tree
• complete tree with branching factor d>= 2

• d child tasks of  parent of size N are all of size N/c, c>1

• work to do task of size N is O(Na),  a>= 1

° Example: Sign function based eigenvalue routine
• d=2, c=4 (on average), a=1.5

° Example: Sparse Cholesky on 2D mesh
• d=4, c=4, a=1.5

° Combine these assumptions with model of data
parallelism
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Simulated efficiency of Sign Function Eigensolver
• Starred lines are optimal mixed parallelism
• Solid lines are data parallelism
• Dashed lines are switched parallelism
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Simulated efficiency of Sparse Cholesky
• Starred lines are optimal mixed parallelism
• Solid lines are data parallelism
• Dashed lines are switched parallelism
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Actual Speed of Sign Function Eigensolver
• Starred lines are optimal mixed parallelism
• Solid lines are data parallelism
• Dashed lines are switched parallelism
• Intel Paragon, built on ScaLAPACK
• Switched parallelism worthwhile!


